
Calibration
+ modules

Calibration

Calibration is the act of comparing measured values
under test to a set of known values.

• Calibration assumes that the measured values
depend only on the known value.

• Calibrating allows future measurements to be
transformed into unknown quantities of interest.

Temperature measurement
• Raw measurements: Resistance, voltage or

digital number.

• Unknown values: Water temp in deg C (or
Kelvin).

f(x) is known

known temp (deg C)
Instrument

Raw measurements

Temperature calibration
• Raw measurements: Here we measure

resistance, voltage or digital number.

• Known values: Water temperature in deg C (or
kelvin).

f(x) = is not known

known Temp (deg C)
Instrument

Raw measurements

How to compute f(x)
1. Choose a function that makes sense. If instrument
response is linear, choose a line.

2. y = mx + b

3. TActual = mTArduino + b. This is our f(x)

4.Another option is the Steinhart-Hart equation:

1
T
= A+B ln(R)+C ln(R)3

Steinhart-Hart Equation

• In this case our function is f(R), Resistance.

• S-H is a polynomial of form a + bx + cx2 + dx3 + zxn…

• For at-home measurements, we assumed A,B,C were known.
But we want f(R) to be accurate, so we calibrate.

• For the calibration, we know T and R. Then we solve for
A,B,C using curve fitting.

• S-H is linear with respect to the parameters, A, B, C.

1
T
= A+B ln(R)+C ln(R)3

sometimes called fit parameters

Error
1. We want TActual - f(Resistance) = 0.

2. In reality, TActual - f(Resistance) = err.

3. Error leads to a misfit between the actual Temp and
the calibration. We seek to minimize the misfit.

4. We can make many measurements of TBath and
TModel. This allows us to solve the calibration equation
in a least-square sense.

General curve fitting

8

Are you familiar with this?

If so, you have already done curve fitting.

General curve fitting
• Mathematical basis of regression analysis (Excel makes

this easy).

• Jumping off point for the field of Inverse Modeling.

• Extremely versatile tool, because many nonlinear
equations can be linearized.

• How do we get the best fit? Minimize the model-data
difference (sometimes called Chi2 minimization)

9

χ 2 = A ⋅x− ŷobs
2

General linear least squares

• A – the “design” matrix; with m>n.
Alternately called the “model”.

• x – the parameters

• If a linear fit,

• Note: Elements in design matrix
don’t have to be linear – only model
has to be linear w.r.t. the parameters
(x).

χ 2 = A ⋅x− ŷobs
2

A =

a1,1 ! a1,n
" # "
" # "
am,1 ! am,n

!

"

#
#
#
#
#

$

%

&
&
&
&
&x =

x1
!

xn

!

"

#
#
#
#
#

$

%

&
&
&
&
&

x = m b!
"

#
$
T

A =
a3 ! cos(θ)
" # "
1/ a ! sinh(φ)

#

$

%
%
%
%

&

'

(
(
(
(

General linear least squares

• Procedure: Find minimum in model
data difference.

• This is guaranteed to find a minimum,
b.c. the function is a quadratic.

∂χ 2

∂x
= 0

e

f(e) = e2

χ 2 = A ⋅x− ŷobs
2

General linear least squares

• This is what Excel does when you
choose “add a trendline”...

• This is also the beginning of inverse
modeling.

• All you need is a design matrix that’s
linear in its parameters, Python does
the rest.

x= ATA()
−1
AT ⋅ ŷobs

General linear least squares

• IMPORTANT NOTES:

• The solution is only truly an error
minimization when m>n, ie
rows>columns;
#equations>#unknowns.

• Solution is exactly determined when
m=n, but no minimization of error.

• The inverse(A) can be singular and
hard to calculate if basis functions
aren’t truly independent

x= ATA()
−1
AT ⋅ ŷobs

Checking fit quality

• Coefficient of Determination, R2 – related to the sum of
the square of the residuals

residuals = yobsi −A ⋅x() = yobsi − ymod
i()

R2 =1−
yobsi − ymodi()

i=1

N

∑
2

yobsi − yobs()
i=1

N

∑
2

Caveats
• We are measuring resistance.

• Soil also has varying electrical conductivity, so our
measurements will be partly influenced by the
properties of the soil.

• Other influences: Distance between probes,
temperature, salinity of the water, etc.

Linear calibration

Raw measurements

So
il

w
at

er

Functions or ‘modules’ in
Python

Modules are like black boxes (the user doesn’t know
how the magic happens)

Functions or ‘modules’ in
Python

def function_name(Input1,Input2):

“””

doc string (or header)

“””

Output1 = Input1 + Input2 # Here you put the operations you want to perform.

Tinv = A +B log(R) + C log(R)^3 # Can be a function or any other task python does.

return Input1, Output1 # Here you return the arguments you want to output.

Modules are limited in scope
• All the variables created inside the module

disappear after the module is executed.

• The only variables that survive are those that are
“output” on the “return” line.

• If an input variable is modified and then output, it
will be changed permanently.

