Data and

measurement

How to make and store measurements on a computer.
Or a brief introduction on how computers think.
Are they really intelligent, even if its artificial?

Bits

Bit $=$ binary digit.

- This is the smallest unit of information on a
computer.
- A bit is either 'on' or 'off', 'yes or no', 'high or low'.
- There is no intermediate state.
- All information is stored in bits.

Bits

Bit $=$ binary digit.

- Each bit has only two possible states, but computers can do more complex tasks than 'yes' or 'no'.
- This is possible by organizing bits into groups.

How do we count with Bits?

Remember positional notation from (elementary school)?

- In Base 10, we have: 0,1,2,3,4,5,6,7,8,9 (10 symbols).
- $00009=9$.
- If we want a number > 9, we have to increment to a new position.
- $100009=\left(1 \times 10^{5}\right)\left(0 \times 10^{4}\right)\left(0 \times 10^{3}\right)\left(0 \times 10^{2}\right)\left(0 \times 10^{1}\right)\left(0 \times 10^{0}\right)$

How do we count with Bits?

Positional notation also applies for computers, but with fewer symbols.

- In Base 2, we have: 0,1 (2 symbols).
- If we want a positional number > 1 , we have to increment to a new position.
- $100001=\left(1 \times 2^{5}\right)\left(0 \times 2^{4}\right)\left(0 \times 2^{3}\right),\left(0 \times 2^{2}\right)\left(0 \times 2^{1}\right)\left(1 \times 2^{0}\right)$

Bytes

- $0000000=1$ byte. Also known as a binary number.
- Each 'position' in the byte has 2 possible states -1 or 0 .
- The number of possible numbers represented by a byte is captured by the following formula
- $00000001=0^{7}+0^{6}+0^{5}+0^{4}+0^{3}+0^{2}+0^{1}+2^{0}=1$

Bytes

－A grouping of bits－usually 8 bits．
－Why 8？Because this was the minimum number of bits required to represent all ascii characters．

Decimal Artict Hox Ascil：				［ecinal：AttNst：HEx：ASCI：			
$1]$	$0 \cdot 0$	\ldots	NIII	：13	$7 \cdot 11$	211	Enace
1	0.1	01	SOH	33	2.1	21	！
2	0：2	02	STX	3.1	2：2	22	＇
3	0.3	03	11x	： h	7 ：	7.1	\square
4	0：4	04	EOT	36	2：4	24	\＄
，	0－5	0.6	I PN：	iif	7 H	加	\％，
6	0.6	0	ACK	38	2.6	28	\＆
7	0：7	07	EEL	39	2：7	27	1
13	0.18	08	132	$41]$	711	211	1
9	0：9	09	TAR	41	2：0	20	1
10	0：A	On	LF	＇2	2：A	2 N	＊
11	0 1！	III：	UI	43	713	$21!$	1
12	0：0	0 C	FF	44	2：C	20	
13	0－1）	III：	C：3	14	711	$21)$	
14	$0 . E$	OE	SO	46	$2 . \mathrm{E}$	2 E	
15	0：F	OF	SI	4	2：F	2 F	1
16	10	10	1） 1	413	： 11	：	11
17	7：1	11	DC1	49	3：1	31	1
16	1－9	17	11\％	（1）	3．	涼	；
19	1.3	13	DC3	51	3.3	33	3
20	1：1	14	DC4	52	3：4	31	4
71	15	15	N．4．	¢． 3	3	\％	\％
22	1：6	16	SYN	54	3：0	30	0
2	1\％\％	1%	1113	\％	： 1	if	1
24	1.8	18	Cand	56	3.8	38	8
25	1：9	19	El2	57	3：9	39	9
为	1 A	14	Sill 3	413	3 A	Sia	
27	1：В	1 B	ESC	99	3：B	3B	；
21	1－1：	10：	1 Si	hil	：${ }^{\text {c }}$	3：	4
29	1．D	10	GS	61	3．D	3D	－
30	1：E	1E	RS	02	3：E	3 E	＊
31	11	11	$11: i$	ก้：3	31	：	\downarrow

Dacimal：Artict：Hec A．Scill			
\％	1．0	10	9
225	E． 1	E1	2
226	E：2	E2	$\stackrel{3}{4}$
9\％＇	13	1：	$\ddot{\square}$
228	E：4	E4	\square
\％楽	1－6	14	4
230	E． 6	E6	㦴
231	E：7	E7	\bigcirc
7：1\％	18	1 t	4
233	E：9	E9	6
23.1	E：A	EA	$\stackrel{4}{4}$
7\％	113	113	z
236	E： C	EC	i
\％iif	1－11	111	1
238	E．E	EE	i
239	E：F	EF	1
741	10	10	0
241	F： 1	F1	ћ
9%	$1 \cdot 7$	17	\bigcirc
243	F． 3	F3	$\stackrel{3}{0}$
241	F：1	F／1	8
74．	15	13.	${ }^{6}$
246	F： 6	F6	0
Mir	$1 \cdot 1$	$1 /$	
248	F． 8	F8	2
249	F：	F9	－
971］	1 A	1.4	is
251	F：B	FB	0
\％\％${ }^{\text {\％}}$	$1 \cdot \mathrm{C}$	1 C	0
253	F．D	FD	\dot{i}
25.1	F：E	FE	P
\％	11	11	

Bytes

- $11111111=2^{7}+2^{6}+2^{5}+2^{4}+2^{3}+2^{2}+2^{1}+2^{0}=255=2^{8}$
- An 8-bit microprocessor (computer) can resolve a number as big as 255.
- By analogy, $2^{64 \sim 1.8447 e+19}$
- The actual biggest integer a 64-bit microprocessor can resolve is 9223372036854775807.

A cartoon version of bits

- $0=$

A cartoon version of bits

A cartoon version of bits

$\square \mathrm{P}$

- The previous slides explain how integers are stored. What about rational numbers?
- Rational numbers: This is done with scientific notation: $123 \times 10^{-1}=12.3$.
- Rational number on 32-bit machine $=23$ bits for significant figures +1 bit for sign +8 bits for exponent.
- 32-bit signed integer $=(00000000)(00000000)(00000000)(00000000)$
- Text: ASCII Table.
- $01000001=A($ capital A).
- $01011010=Z$ (capital Z).

Binary arithmetic

If a computer only knows 1 or 0 , how can it do complex math?

- All math operations can be broken down into a series of sums.
- Example: $7+2=00000111+0000010$

$$
\begin{aligned}
& 7=00000111 \\
& 2=00000010 \\
& \hline 9=00001001
\end{aligned}
$$

Binary arithmetic

If a computer only knows 1 or 0 , how can it do complex math?

- All math operations can be broken down into a series of sums.
-What about?: 3-2 = $11000000+(-) 01000000$. Signed integer. A separate bit keeps track of the sign of the integer.
- What about?: $3 \times 2=3+3$.
- What about?: $3 \div 2=3+(-2)+(-2)$ until the value goes negative.

Summary

- int - an integer number that computers can represent easily in binary.
- floats - a rational number that computers can represent in binary using scientific notation and one bit for the sign.
- str - a table lookup for characters that can be represented by binary.
- arithmetic - bitwise addition. Everything else requires an algorithm

Microcontrollers

Arduino microprocessor:

- Microcontroller: ATmega2560
- Operating Voltage: 5V
- Input Voltage (recommended): 7-12V
- Input Voltage (limit): 6-20V
- Digital I/O Pins: 54 (of which 15 provide PWM output)
- Analog Input Pins: 16
- DC Current per I/O Pin: 20 mA
- DC Current for 3.3V Pin: 50 mA
- Flash Memory:

256 KB of which 8 KB used by bootloader

- SRAM: 8 KB
- EEPROM: 4 KB
- Clock Speed 16 MHz
- LED_BUILTIN: 13
- Length: 101.52 mm
- Width: 53.3 mm
- Weight: 37 g

Analog inputs:

- Reads variable 0 to 5 V .
- Converts voltage to digital number

Power/Ground:

- Use to complete your circuit

Microcontrollers

Input/Output

Most Common forms of I/O:

- Analog Input: Read 0 to +5 V and convert from voltage to engineering units.
- Analog Input: 4 to 20 mA and convert from current to engineering units.
- Digital Output: Hi/Lo to send a 'yes’ or 'no’ signal.
- Serial I/O: Data sent 1 bit at a time.
- There are others, but these are the most common.

Serial I/O

Benefits of Serial I/O:

- Cabling is less expensive.
- Easy to read.
- What uses serial? USB, Ethernet, Firewire, DV, coaxial.
- We will use serial called RS-232.

Analog Input

Analog to Digital Conversion:

- Microprocessor reads voltage.
- Microprocessor converts to an integer because this is what a computer stores - binary numbers.
- To analyze a circuit, we need to convert back to voltage:
- $V_{\text {sens }}=V_{\text {in }} /$ Digital_scale. Digital_scale depends on the bit-size of the microprocessor.
- Arduino is 10-bit A to D microprocessor: $2^{10}=1024$ digital units (this is important for your code).

Analog Input

Analog to Digital Conversion:

- Resolution $=\mathrm{V}_{\mathrm{in}} /\left(2^{\mathrm{n}}-1\right)$.

Example:

- We connect to Analog Input 4 (A4).
- A voltage of Vin $=+5 \mathrm{~V}$ is applied to the circuit.
- We read A4 and get 880. What does that tell us?
- $\mathrm{V}_{\text {forward }}($ at A 4$)=\mathrm{Vin}^{*} 880 /\left(2^{\mathrm{n}}-1\right)$.

Arduino IDE

- https://www.arduino.cc/en/Main/software
- https://www.tinkercad.com/
*) Blink | Arcuino 1.8.5
00-\squareण
This example code is in tne p.blic domain.
http:/ínwn.arduing.Ec/ev/Tutorigl/Blink
// the setup function runs ance when you press reset or power the board
void selup() {
// initializc digital pin LED_BJILTIN as on output.
pinMode(I FD_RUTI TTN, OUTP\IT),
}
// the loop function runs over and over again forever
void loop() {S
digitalNrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
delay(1000); // wait for a second
digitalNrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
digitalnrite(LED_BUILTIN, LOW); /f turm the LED off
}

```
```

