Data and measurement

How to make and store measurements on a computer.

Or a brief introduction on how computers think.

Are they really intelligent, even if its artificial?

Bits

- **Bit = binary digit**.
 - This is the smallest unit of information on a
 - computer.
 - A bit is either 'on' or 'off', 'yes or no', 'high or low'.
 - There is no intermediate state.
 - All information is stored in bits.

Bits

- **Bit = binary digit**.
 - Each bit has only two possible states, but

computers can do more complex tasks than 'yes' or

'no'.

• This is possible by organizing bits into groups.

How do we count with Bits?

Remember positional notation from (elementary school)?

- In Base 10, we have: 0,1,2,3,4,5,6,7,8,9 (10 symbols).
- 00009 = 9.
- If we want a number > 9, we have to *increment to a new position*.
- $100009 = (1 \times 10^5) (0 \times 10^4) (0 \times 10^3) (0 \times 10^2) (0 \times 10^1) (0 \times 10^0)$

How do we count with Bits?

Positional notation also applies for computers, but with fewer symbols.

- In Base 2, we have: 0,1 (2 symbols).
- If we want a positional number > 1, we have to increment to a new position.
- $100001 = (1 \times 2^5) (0 \times 2^4) (0 \times 2^3), (0 \times 2^2) (0 \times 2^1) (1 \times 2^0)$

- 0000000 = 1 byte. Also known as a binary number.
- Each 'position' in the byte has 2 possible states 1 or 0.
- The number of possible numbers represented by a byte is captured by the following formula
- $0000001 = 0^7 + 0^6 + 0^5 + 0^4 + 0^3 + 0^2 + 0^1 + 2^0 = 1$

- A grouping of bits usually 8 bits.
- Why 8? Because this was the minimum number of bits required to represent all ascii characters.

Decimal: ArtNet: Hex: ASOI:	Decimal: ArtNet: Hex: ASCII:	Decimal: ArtNet: Hex: ASCII:	Decimal: ArtNet: Hex: ASCII:	Decimal: ArtNet: Hex: ASGI:	Decimal: ArtNet: Hex: ASCII:	Decimal: ArtNet: Hex: ASCII:	Decimal: ArtNet: Hex: ASGII:
0 010 00 NUL	32 210 20 (space)	64 4°0 40 Ø	96 610 60 1	128 810 80 €	160 A10 A0	192 C10 C0 Å	224 1:10 1.0 A
1 0.1 01 SOH	33 2.1 21 !	65 4.1 41 A	97 6.1 61 a	129 8.1 81	161 A.1 A1 I	193 C.1 C1 Å	225 E.1 E1 ຢ
2 0:2 02 STX	34 2:2 22 "	60 4:2 42 B	98 0:2 02 b	130 8:2 82 .	162 A:2 A2 ¢	194 C:2 C2 Å	226 E:2 E2 4
3 0.3 03 LTX	05 2 3 23 4	- 67 4 3 43 C	99 B 3 B3 c	101 8 3 83 7	163 A 3 A3 £	195 C 3 C3 Å	227 1 3 1 3 8
4 0:4 04 EOT	36 2:4 24 \$	68 4:4 44 D	100 0:4 64 d	132 8:4 84	164 A:4 A4 🗴	196 G:4 C4 Å	228 E:4 E4 a
5 015 05 LNQ	37 215 25 %	69 415 45 L	101 615 65 e	163 815 85	165 A15 A5 Y	197 C15 C5 Å	229 115 15 8
6 0.6 06 ACK	38 2.6 26 &	70 4.6 46 F	102 6.6 66 f	134 8.6 86	166 A.6 A6 ;	198 C.6 C6 Æ	230 E.6 E6 න
7 0:7 07 BEL	39 2:7 27 '	71 4:7 47 G	103 0:7 07 g	135 8:7 87 ‡	167 A:7 A7 §	199 C:7 C7 Ç	231 E:7 E7 ç
8 0.8 08 133	40 2 11 211 (72 4 8 48 11	104 8-8 88 h	138 8 8 88 7	168 A 8 AB	200 C B C8 Í	232 1 8 1 8 é
9 0:9 09 TAB	41 2:9 29)	73 4:9 49 1	105 0:9 09 i	137 8:9 89 ‰	169 A:9 A9 💿	201 G:9 C9 É	233 E:9 E9 ć
10 0:A 0A LF	42 2:A 2A *	- 74 - 4:A - 4A - J	100 0:A 0A j	138 8:A 8A S	170 A:A AA °	202 C:A CA E	234 E:A EA é
11 0.0 0B VI	43 2 B 2B 1	75 4 B 4B K	107 B B 6B k	- 109 - 8 B - 803 - K	171 A.B. AB «	203 C B CB I	235 I B I B E
12 0:G 0C FF	44 2:C 2G ,	70 4:C 4C L	108 6:C 6C I	140 8:C 8C 0E	172 A:C AC ·	204 G:C CC 1	236 E:C EC 1
13 0°D 00 CR	45 210 20	-77 41D 4D M	109 610 6D m	141 8°D 8D	173 A1D AD	205 C+D CD Ì	237 1.10 1.0 1.
14 0.E 0E SO	46 2.E 2E .	78 4.E 4E N	110 6.E 6E n	142 8.E 8E Ž	174 A.E AE 🐵	206 C.E CE İ	238 E.E EE i
15 0:F 0F SI	47 2:E 2E /	79 4:F 4F O	111 0:F 0F o	143 8:F 8F	175 A:E AE	207 C:F CF I	239 E:F EF T
18 1 0 10 DEL	48 3 0 30 0	BU 5.0 50 P	112 / 0 /0 p	144 9 0 90	176 B 0 B0 *	208 D 0 100 D	240 1 0 10 0
17 1:1 11 DG1	49 3:1 31 1	81 5:1 51 Q	113 7:1 71 q	145 9:1 91 1	177 B:1 B1 ±	209 D:1 D1 Ñ	241 F:1 F1 ñ
18 112 12 1002	50 312 32 2	- 82 - 512 - 52 - R	114 <i>(</i> 2 <i>(</i> 2 r	146 912 92 1	178 B12 B2 7	210 D12 D2 Ö	242 112 12 6
19 1.3 13 DC3	51 3.3 33 3	83 5.3 53 S	115 7.3 73 s	147 9.3 93 *	179 B.3 B3 *	211 D.3 D3 Ó	243 F.3 F3 0
20 1:4 14 DC4	52 3:4 34 4	84 5:4 54 T	110 7:4 74 t	148 9:4 91 *	180 B:4 B4 1	212 D:4 D4 Ö	244 F:4 F4 0
21 1 5 15 NAK	53 3 5 35 5	B5 5.5 55 U	117 7.5 75 u	149 9 5 95 •	-181 B 5 B5 μ	213 D 5 D5 Ö	245 1 5 15 8
22 1:6 16 SYN	54 3:0 30 0	80 5:6 56 V	118 7:6 76 v	150 9:6 96 -	182 B:6 B6 ¶	214 D:6 D6 Õ	246 F:6 F6 o
23 117 17 LTB	55 317 37 C	- B7 - 517 - 57 - W	118 (°7 (7 w	151 917 97	- 183 - B17 - B7	215 D17 D7 ×	247 117 17 17
24 1.8 18 CAN	56 3.8 38 8	88 5.8 58 X	120 7.8 78 x	152 9.8 98 1	184 B.8 B8	216 D.8 D8 Ø	248 F.8 F8 @
25 1:9 19 EM	57 3:9 39 9	89 5:9 59 Y	121 7:9 79 y	153 9:9 99 🏴	185 B:9 B9 1	217 D:9 D9 0	249 F:9 F9 ù
28 1 A 1A SUB	58 3 A 3A	90 5 A 5A Z	122 (A (A /	154 9 A 9A 8	186 B A BA "	218 D.A. DA Ú	250 I A I A ù
27 1:B 1B ESC	59 3:B 3B ;	91 5:B 5B [123 7 : B 7B (155 9:B 9B →	187 B:B BB »	219 D:B DB 0	251 F:B FB ú
28 1°C 1C 1S	60 31G 3G 6	92 51C 5C 1	124 / G / G	156 9°C 9C os	188 B1C BC ¼	220 D+G DG Ü	252 I 1C I C 0
29 1.D 1D GS	61 3.D 3D -	93 5.D 5D 1	125 7.D 7D }	157 9.D 9D	189 B.D BD ½	221 D.D DD Ŷ	253 F.D FD ý
30 1:E 1E RS	62 3:E 3E >	94 5:E 5E A	120 7 : E 7E ~	158 9:E 9E Ž	190 B:E BE %	222 D:E DE 🕨	254 F:E FE þ
31 1 I 1I US	83 34 34 2	95 5 1 51	127 7.1 71 01.1	159 9 1 91	191 IST BL	223 D I DI	255 1 1 11

- $11111111 = 2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 = 255 = 2^8$
- An 8-bit microprocessor (computer) can resolve a number as big as 255.
- By analogy, 2⁶⁴ ~ 1.8447e+19
- The actual biggest integer a 64-bit microprocessor can resolve is 9223372036854775807.

A cartoon version of bits

A cartoon version of bits

A cartoon version of bits

http://www.wallpapermania.eu/wallpaper/millions-of-minions-despicable-me-2013/5120x3200

- The previous slides explain how integers are stored. What about rational numbers?
- Rational numbers: This is done with scientific notation: $123 \times 10^{-1} = 12.3$.
- Rational number on 32-bit machine = 23 bits for significant figures + 1 bit for sign + 8 bits for exponent.
- 32-bit signed integer = (0000000) (0000000) (0000000) (0000000)
 One integer keeps track of the sign
- Text: ASCII Table.
 - 01000001 = A (capital A).
 - 01011010 = Z (capital Z).

Binary arithmetic

If a computer only knows 1 or 0, how can it do complex math?

- All math operations can be broken down into a series of sums.
- Example: 7 + 2 = 00000111 + 0000010

7 = 000001112 = 00000010

9 = 00001001

Binary arithmetic

If a computer only knows 1 or 0, how can it do complex math?

- All math operations can be broken down into a series of sums.
- What about?: 3 2 = 11000000 + (-) 01000000. Signed integer. A separate bit keeps track of the sign of the integer.
- What about?: $3 \times 2 = 3 + 3$.
- What about?: 3÷2 = 3 + (-2) + (-2) until the value goes negative.

Summary

- int an integer number that computers can represent easily in binary.
- floats a rational number that computers can represent in binary using scientific notation and one bit for the sign.
- str a table lookup for characters that can be represented by binary.
- arithmetic bitwise addition. Everything else requires an algorithm

Microcontrollers

- Arduino microprocessor:
- Microcontroller: ATmega2560
- Operating Voltage: 5V
- Input Voltage (recommended): 7-12V
- Input Voltage (limit): 6-20V
- Digital I/O Pins: 54 (of which 15 provide PWM output)
- Analog Input Pins: 16
- DC Current per I/O Pin: 20 mA
- DC Current for 3.3V Pin: 50 mA
- Flash Memory: 256 KB of which 8 KB used by bootloader
- SRAM: 8 KB
- EEPROM: 4 KB
- Clock Speed 16 MHz
- LED_BUILTIN: 13
- Length: 101.52 mm
- Width: 53.3 mm
- Weight: 37 g

Digital Pins In/Out:

Serial pins: Reads UART, I2C, SPY

Analog inputs:

- Reads variable 0 to 5 V.
- Converts voltage to digital number

Power/Ground:

• Use to complete your circuit

Microcontrollers

Input/Output

Most Common forms of I/O:

- Analog Input: Read 0 to +5V and convert from voltage to engineering units.
- Analog Input: 4 to 20 mA and convert from current to engineering units.
- Digital Output: Hi/Lo to send a 'yes' or 'no' signal.
- Serial I/O: Data sent 1 bit at a time.
- There are others, but these are the most common.

Serial I/O

Benefits of Serial I/O:

- Cabling is less expensive.
- Easy to read.
- What uses serial? USB, Ethernet, Firewire, DV, coaxial.
- We will use serial called RS-232.

Analog Input

Analog to Digital Conversion:

- Microprocessor reads voltage.
- Microprocessor converts to an integer because this is what a computer stores - binary numbers.
- To analyze a circuit, we need to convert back to voltage:
- V_{sens} = V_{in}/Digital_scale. Digital_scale depends on the bit-size of the microprocessor.
- Arduino is 10-bit A to D microprocessor: 2¹⁰ = 1024 digital units (this is important for your code).

Analog Input

Analog to Digital Conversion:

• Resolution = $V_{in}/(2^{n}-1)$.

Example:

- We connect to Analog Input 4 (A4).
- A voltage of Vin = +5V is applied to the circuit.
- We read A4 and get 880. What does that tell us?
- V_{forward} (at A4) = Vin*880/(2ⁿ-1).

Arduino IDE

- https://www.arduino.cc/en/Main/software
- https://www.tinkercad.com/ ullet

